Extensions 1→N→G→Q→1 with N=C22 and Q=C2xA4

Direct product G=NxQ with N=C22 and Q=C2xA4
dρLabelID
C23xA424C2^3xA496,228

Semidirect products G=N:Q with N=C22 and Q=C2xA4
extensionφ:Q→Aut NdρLabelID
C22:(C2xA4) = C2xC22:A4φ: C2xA4/C23C3 ⊆ Aut C2212C2^2:(C2xA4)96,229
C22:2(C2xA4) = D4xA4φ: C2xA4/A4C2 ⊆ Aut C22126+C2^2:2(C2xA4)96,197

Non-split extensions G=N.Q with N=C22 and Q=C2xA4
extensionφ:Q→Aut NdρLabelID
C22.1(C2xA4) = C2xC42:C3φ: C2xA4/C23C3 ⊆ Aut C22123C2^2.1(C2xA4)96,68
C22.2(C2xA4) = C24:C6φ: C2xA4/C23C3 ⊆ Aut C2286+C2^2.2(C2xA4)96,70
C22.3(C2xA4) = C42:C6φ: C2xA4/C23C3 ⊆ Aut C22166C2^2.3(C2xA4)96,71
C22.4(C2xA4) = C23.A4φ: C2xA4/C23C3 ⊆ Aut C22126+C2^2.4(C2xA4)96,72
C22.5(C2xA4) = D4.A4φ: C2xA4/A4C2 ⊆ Aut C22164-C2^2.5(C2xA4)96,202
C22.6(C2xA4) = C4xSL2(F3)central extension (φ=1)32C2^2.6(C2xA4)96,69
C22.7(C2xA4) = C2xC4xA4central extension (φ=1)24C2^2.7(C2xA4)96,196
C22.8(C2xA4) = C22xSL2(F3)central extension (φ=1)32C2^2.8(C2xA4)96,198
C22.9(C2xA4) = C2xC4.A4central extension (φ=1)32C2^2.9(C2xA4)96,200

׿
x
:
Z
F
o
wr
Q
<